极速快3

智能超质料研究与希望

2020-04-01

[1]   SHELBY R A, SMITH D R, SCHULTZ S。 Experimental verification of a negative index of refraction[J]。 Science, 2001, 292(5514):77-79。  
[2]   VALENTINE J, ZHANG S, ZENTGRAF T, et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008, 455(7211):376-379.  
[3]   FANG N, LEE H, SUN C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721):534-537.  
[4]   ZHANG X, LIU Z. Superlenses to overcome the diffraction limit[J]. Nature Materials, 2008, 7(6):435-441.  
[5]   GANSEL J K, MICHAEL T, RILL M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947):1513-1515.  
[6]   PENDRY J B, SCHURIG D, SMITH D R。 Controlling electromagnetic fields[J]。 Science, 2006, 312(5781):1780-1782。  
[7]   LIU R, JI C, MOCK J J, et al。 Broadband ground-plane cloak[J]。 Science, 2009, 323(5912):366-369。  
[8]   GENOV D A, ZHANG S, ZHANG X. Mimicking celestial mechanics in metamaterials[J]. Nature Physics, 2009, 5(9):687-692.  
[9]   彭茹雯,李涛,卢明辉,等。 浅说人工微布局质料与光和声的调控研究[J]。 物理,2012, 41(9):569-574。 PENG R W, LI T, LU M H, et al。 Artifical microstructured materials and manipulation of optical and acoustic waves[J]。 Physics, 2012, 41(9):569-574。  
[10]   VESELAGO V G. The electrodynamics of substances with simultaneously negative values of and μ[J]. Physics-Uspekhi, 1968, 10(4):509-514.  
[11]   PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966.  
[12]   CUI T J, QI M Q, WAN X, et al。 Coding metamaterials, digital metamaterials and programmable metamaterials[J]。 Light:Science and Applications, 2014, 3(10):e218。  
[13]   GIOVAMPAOLA C D, ENGHETA N。 Digital metamaterials[J]。 Nature Materials, 2014, 13(12):1115-1121。  
[14]   LIU X, ZHOU J, LITCHINITSER N, et al. Metamaterial all-optical switching based on resonance mode coupling in dielectric meta-atoms[J]. ArXiv Preprint, 2014, 1412:3338.  
[15]   WU H Y, ZHOU J, LAN C W, et al. Microwave memristive-like nonlinearity in a dielectric metamaterial[J]. Scientific Reports, 2014, 4:5499.  
[16]   ZHAO Q, ZHOU J, ZHANG F, et al。 Mie resonance-based dielectric metamaterials[J], Materials Today, 2009, 12(12):60-69。  
[17]   SOUKOULIS C M, WEGENER M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 2011, 5(9):523-530.  
[18]   KADIC M, BVCKMANN T, STENGER N, et al。 On the practicability of pentamode mechanical metamaterials[J]。 Applied Physics Letters, 2012, 100(19):191901。  
[19]   BVCKMANN T, THIEL M, KADIC M, et al. An elasto-mechanical unfeelability cloak made of pentamode metamaterials[J], Nature Communications 2014, 5:4130.  
[20]   BRÛLÉ S, JAVELAUD E H, ENOCH S, et al. Experiments on seismic metamaterials:Molding surface waves[J]. Physical Review Letters, 2014, 112(13):421-431.  
[21]   阮居祺, 卢明辉, 陈延峰, 等。 基于弹性力学的超构质料[J]。 中国科学:技能科学, 2014, 44(12):1261-1270。 RUAN J Q, LU M H, CHEN Y F, et al。 Metamaterial based on elastic mechanics[J]。 Science China:Technological Sciences, 2014, 44(12):1261-1270。  
[22]   GUENNEAU S, AMRA C, VEYNANTE D。 Transformation thermodynamics:cloaking and concentrating heat flux[J]。 Optics Express, 2012, 20(7):8207-8218。  
[23]   沈翔瀛, 黄吉平.热超构质料的研究希望[J]. 物理, 2013, 42(3):170-180. SHEN X Y,HUANG J P. Research progress in thermal metamaterials[J]. Physics, 2013, 42(3):170-180.  
[24]   徐象繁, 周俊, 杨诺, 等. 人工微布局质料与热的调控[J]. 中国科学:技能科学, 2015, 45(7):705-713. XU X F, ZHOU J, YANG N, et al. Artificial microstructure materials and heat flux manipulation[J]. Science China:Technological Sciences, 2015, 45(7):705-713.  
[25]   HAN T, BAI X, THONG J T, et al. Full control and manipulation of heat signatures:cloaking, camouflage and thermal metamaterials[J]. Advanced Materials, 2014, 26(11):1731-1734.  
[26]   CHEN P Y, ARGYROPOULOS C, ALÙ A. Broadening the cloaking bandwidth with non-foster metasurfaces[J]. Physical Review Letters, 2013, 111(23):233001.  
[27]   SATO K, NOMURA T, MATSUZAWA S, et al。 Metamaterial techniques for automotive applications[C]//Hangzhou, China:PIERS proceedings, 2008:1122-1125。  
[28]   刘若鹏,季春霖,赵治亚,等。超质料:从头塑造与从头思考[J].工程, 2015,1(2):179-184. LIU R P, JI C L, ZHAO Z Y, et al. Metamaterials:reshape and rethink[J]. Engineering, 2015, 1(2):179-184.  
[29]   刘辉. 微布局质料的质料基因工程[R].南京:南京大学. LIU H. Gene-engineering of Micro-architected Materials[R]. Nanjing:Nanjing University.  
[30]   周济。 超质料与自然质料融合的若干思考[J]。 新质料财富, 2014,(9):5-8。 ZHOU J。 Some reflections on the fusion of metamaterials and natural materials[J]。 Advanced Materials Industry, 2014, (9):5-8。  
[31]   CUI T J, SMITH D R, LIU R。 Metamaterials:Theory, Design, and Applications[M]。 Boston, MA:Springer-Verlag, 2010。  
[32]   PITCHAPPA P, MANJAPPA M, HO C P, et al。 Active control of electromagnetically induced transparency analog in terahertz MEMS metamaterial[J]。 Advanced Optical Materials, 2016, 4:541-547。  
[33]   GIESSEN H. Nanophotonics:grating games[J]. Nature Photonics, 2008, 2(6):335-337.  
[34]   NI X, WONG Z J, MREJEN M, et al。 An ultrathin invisibility skin cloak for visible light[J]。 Science, 2015, 349(6254):1310-1314。  
[35]   HASAN S B, LEDERER F, ROCKSTUHL C. Nonlinear plasmonic antennas[J]. Materials Today, 2014, 17(10):478-485.  
[36]   WANG Z, DONG Z G, GU Y H, et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures[J]. Nature Communications, 2016, 7:11283.  
[37]   FANG M, HUANG Z, KOSCHNY T, et al。 Electrodynamic modeling of quantum dot luminescence in plasmonic metamaterials[J]。 ACS Photonics, 2016, 3(4):558-563。  
[38]   GUO R, RUSAK E, STAUDE I, et al。 Multipolar coupling in hybrid metal-dielectric metasurfaces[J]。 ACS Photonics, 2016, 3(3):349-353。  
[39]   PTASINSKI J N, KIM S W, PANG L, et al. Optical tuning of silicon photonic structures with nematic liquid crystal claddings[J]. Optics Letters, 2013, 38(12):2008-2010.  
[40]   SVIRKO Y P, ZHELUDEV N I. Polarization of Light in Nonlinear Optics[M]. New York:John Wiley & Sons, 1998.  
[41]   PREIS S, WIENS A, MAUNE H, et al. Reconfigurable package integrated 20 W RF power GaN HEMT with discrete thick-film MIM BST varactors[J]. Electronics Letters, 2016, 52(4):296-298.  
[42]   LI B, WANG F, ZHOU D, et al. Modes of surface premelting in colloidal crystals composed of attractive particles[J]. Nature, 2016, 531:485-488.  
[43]   CHEN W J, JIANG S J, CHEN X D, Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide[J]. Nature Communications, 2014, 5:5782.  
[44]   ZHANG X Q, XU Q, LI Q, et al。 Asymmetric excitation of surface plasmons by dark mode coupling[J]。 Science Advances, 2016, 2:e1501142。  
[45]   CAI W S。 Optical Metamaterials:Fundamentals and Applications[M]。 New York:Springer, 2010。  
[46]   MARTIN A, KADIC M, SCHITTNY R, et al. Phonon band structures of three-dimensional pentamode metamaterials[J]. Physical Review B, 2012, 86(15):4172-4181.  
[47]   LAYMAN C N, NAIFY C J, MARTIN T P, et al. Highly-anisotropic elements for acoustic pentamode applications[J]. Physical Review Letters, 2012, 111(2):1103-1114.  
[48]   FAN C Z, GAO Y, HUANG J P。 Shaped graded materials with an apparent negative thermal conductivity[J]。 Applied Physics Letters, 2008, 92:251907。  
[49]   NARAYANA S, SATO Y. Heat flux manipulation with engineered thermal materials[J]. Physical Review Letters, 2012, 108:214303.  
[50]   SCHITTNY R, KADIC M, GUENNEAU S, et al. Experiments on transformation thermodynamics:molding the flow of heat[J]. Physical Review Letters, 2012, 110:195901.  
[51]   HAN T, BAI X, LIU D, et al. Manipulating steady heat conduction by sensu-shaped thermal metamaterials[J]. Scientific Reports, 2015, 5:10242.  
[52]   QIU C, GAO D, HAN T, et al。 Experimental demonstration of a bilayer thermal cloak[J]。 Physical Review Letters, 2014, 112:054302。  
[53]   NGUYEN D M, XU H, ZHANG Y, et al. Active thermal cloak[J]. Applied Physics Letters, 2015, 107(12):121901.  
[54]   PAINTER O, LEE R K, SCHERER A, et al。 Two-dimensional photonic band-gap defect mode laser[J]。 Science, 1999, 284(5421):1819-1821。  
[55]   NODA S, YOKOYAMA M, IMADA M, et al. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design[J]. Science, 2001, 293(5532):1123-1125.  
[56]   UNOLD H J, GOLLING M, MICHALZIK R, et al. Photonic crystal surface-emitting lasers:tailoring waveguiding for single-mode emission[J]. ECOC, 2001, 4:520-521.  
[57]   ENGHETA N, ZIOLKOWSKI R W。 Metamaterials:Physics and Engineering Explorations[M]。 Hoboken, NJ:Wiley, 2006。  
[58]   YI J, BUROKUR S N, DE LUSTRAC A. Conceptual design of a beam steering lens through transformation electromagnetics[J]. Optics Express, 2015, 23(10):12942-12951.  
[59]   BHATTACHARYYA S, SRIVASTAVA K V. Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator[J]. Journal of Applied Physics, 2014, 115(6):064508.  
[60]   SHALAEV V M, KAWATA S. Nanophotonics with Surface Plasmons[M]. Boston:Elsevier, 2007.  
[61]   SCHOBER A M, IMESHEV G, FEJER M M。 Tunable-chirp pulse compression in quasi-phase-matched second-harmonic generation[J]。 Optics Letters, 2002, 27(13):1129-1131。  
[62]   MA G, YANG M, XIAO S, et al。 Acoustic metasurface with hybrid resonances[J]。 Nature Materials, 2014, 13(9):873-878。  
[63]   XIAO M, MA G, YANG Z, et al. Geometric phase and band inversion in periodic acoustic systems[J]. Nature Physics, 2015,11(3):240-244.  
[64]   CHENG B, CHEN Z G, ZHANG C L, et al。 Three-dimensionality of band structure and a large residual quasiparticle population in Ba0。67K0。33Fe2As2 as revealed byc-axis polarized optical measurements[J]。 Physical Review B, 2011, 83(14):1498-1504。  
[65]   XU Y, FEGADOLLI W S, GAN L, et al. Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice[J]. Nature Communications, 2016, 7:11319.  
[66]   LI J, CHEN S, YANG H, et al. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces[J]. Advanced Functional Materials, 2015, 25(5):704-710.  
[67]   董国艳, 毕科, 周济。 具有零相移传输性质的超质料研究[J]。 中国科学, 2014, 44(4):406-416。 DONG G Y, BI K, ZHOU J。 Zero phase delay in metamaterials[J]。 Scientia Sinica, 2014, 44(4):406-416。  
[68]   SUN J, LITCHINITSER N M, ZHOU J. Indefinite by nature:grom ultraviolet to terahertz[J]. ACS Photonics. 2014, 1(4):293-303.  
[69]   MA Y G, LAN L, JIANG W, et al. A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity[J]. NPG Asia Materials, 2013, 5:e73.  
[70]   XU S, XU H, GAO H, et al。 Broadband surface-wave transformation cloak[J]。 PNAS, 2015, 112(25):7635-7638。  
[71]   方振华, 罗春荣, 赵晓鹏。 银树枝左手超质料的变态古斯-汉欣位移[J]。 光学学报, 2015, 35(3):0316001。 FANG Z H, LUO C R, ZHAO X P。 Negative Goos-Hanchen shift of left-handed-metamaterials based on the silver dendritic structure[J]。 Acta Optica Sinica, 2015, 35(3):0316001。  
[72]   屈绍波,王甲富,马华,等。 超质料设计及其在隐身技能中的应用[M]。 北京:科学出书社, 2013。 QU S B, WANG J F, MA H, et al。 Metamaterial Design and Applications in Stealth Technology[M]。 Beijing:Science Press, 2013。  

幸运快三 河南快3 优优彩票APP 北京快3 重庆幸运农场网址 北京11选5开奖结果查询 江西快3 乐彩网导航 青海快3 河北11选5