极速快3

形状影象智能复合质料的成长与应用

2020-04-01

[1] 赵振业. 质料科学与工程的新时代[J]. 航空质料学报, 2016,36(3):1-6. ZHAO Z Y. A new age of materials science and engineering[J]. Journal of Aeronautical Materials, 2016,36(3):1-6.
[2] 杜善义,冷劲松,王殿富. 智能质料系统和布局[M]. 北京:科学出书社, 2001:1-3. DU S Y, LENG J S, WANG D F. Smart material systems and structures[M]. Beijing:Science Press, 2001:1-3.
[3] 于相龙,周济. 智能超质料研究与希望[J]. 质料工程, 2016,44(7):119-128. YU X L, ZHOU J. Research advance in smart metamaterials[J]. Journal of Materials Engineering, 2016,44(7):119-128.
[4] 李卓球,宋显辉. 智能复合质料布局体系[M]. 武汉:武汉理工大学出书社, 2005:262. LI Z Q, SONG X H. Structural system of intelligent composite[M]. Wuhan:Wuhan University of Technology Press,2005:262.
[5] 胡金莲. 形状影象聚合物在生物医学规模的研究希望[J]. 中国质料希望, 2015, 34(3):191-203. HU J L. Progress of shape memory polymers in biomedical applications[J]. Materials China, 2015, 34(3):191-203.
[6] 沈学霖,朱光亮,杨鹏飞. 生物医用形状影象高分子质料[J]. 质料工程, 2017, 45(7):111-117. SHEN X L, ZHU G M, YANG P F. Biomedical shape memory polymers[J]. Journal of Materials Engineering, 2017, 45(7):111-117.
[7] YAKACKI C M, SHANDAS R, SAFRANSKI D, et al. Strong, tailored, biocompatible shape-memory polymer networks[J]. Advanced Functional Materials, 2008, 18(16):2428-2435.
[8] LENDLEIN A, LANGER R. Biodegradable, elastic shape-memory polymers for potential biomedical applications[J]. Science, 2002, 296(5573):1673-1676.
[9] LAN X, LIU Y, LV H, et al. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge[J]. Smart Materials and Structures, 2009, 18(2):1560-1574.
[10] LASCHI C, CIANCHETTI M, MAZZOLAI B, et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics, 2012, 26(7):709-727.
[11] NAJEM J, SARLES S A, AKLE B, et al. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators[J]. Smart Materials and Structures, 2012, 21(9):094026.
[12] CASTELLANO M G, INDIRLI M, MARTELLI A. Progress of application, research and development and design guidelines for shape memory alloy devices for cultural heritage structures in Italy[J]. Proceedings of SPIE——The International Society for Optical Engineering, 2001, 4330(1):250-261.
[13] 李云飞,陈成,曾祥国. NiTi合金的相变-塑性统一本构模子与数值算法[J]. 航空质料学报, 2018,38(1):26-32. LI Y F, CHEN C, ZENG X G. Unified constitutive model and numerical implementation of NiTi alloy involving phase transformation and plasticity[J]. Journal of Aeronautical Materials, 2018,38(1):26-32.
[14] ÖLANDER A. An electrochemical investigation of solid cadmium-gold alloys[J]. Journal of the American Chemical Society, 1932, 54(10):3819-3833.
[15] KAEUFER H, RAUTENBERG L, PAHL J. Process for the manufacture of articles of high mechanical strength from thermoplastic synthetic resins[P].US41129182A.
[16] BUEHLER W J, GILFRICH J V, WILEY R C. Effect of low-temperature phase changes on the mechanical properties of Alloys near composition TiNi[J]. Journal of Applied Physics, 1963, 34(5):1475-1477.
[17] JANI J M, LEARY M, SUBIC A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014, 56(14):1078-1113.
[18] KAUFFMAN G, MAYO I. The story of Nitinol:the serendipitous discovery of the memory metal and its applications[J]. The Chemical Educator, 1997, 2(2):1-21.
[19] 王楠,燕绍九,彭思侃,等. 3D打印石墨烯制备技能及其在储能规模的应用研究希望[J]. 质料工程, 2017,45(12):112-125. WANG N, YAN S J, PENG S K, et al. Research progress on 3D printed graphene materials synthesis technology and its application in energy storage field[J]. Journal of Materials Engineering, 2017,45(12):112-125.
[20] 卢秉恒,李涤尘. 增材制造(3D打印)技能成长[J]. 机器制造与自动化, 2013, 42(4):1-4. LU B H, LI D C. Development of the additive manufacturing (3D printing) technology[J]. Journal of Machine Building & Automation, 2013,42(4):1-4.
[21] 李涤尘,贺康健,田小永,等. 增材制造:实现宏微布局一体化制造[J]. 机器工程学报, 2013, 49(6):129-135. LI D C, HE J K,TIAN X Y,et al. Additive manufacturing:integrated fabrication of macro/microstructures[J].Journal of Mechanical Engineering, 2013,49(6):129-135.
[22] 王延庆,沈竞兴,吴海全. 3D打印质料应用和研究近况[J]. 航空质料学报, 2016,36(4):89-98. WANG Y Q, SHEN J X, WU H Q. Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 2016,36(4):89-98.
[23] 杨平华,高祥熙,梁菁,等. 金属增材制造技能成长动向及无损检测研究希望[J]. 质料工程, 2017,45(9):13-21. YANG P H, GAO X X, LIANG J,et al. Development tread and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017,45(9):13-21.
[24] MA J, FRANCO B, TAPIA G, et al. Spatial control of functional response in 4D-printed active metallic structures[J]. Scientific Reports, 2017, 7:46707.
[25] HABERLAND C, ELAHINIA M, WALKER J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing[J]. Smart Materials and Structures, 2014, 23(10):e104002.
[26] CARRENO-MORELLI E, MARTINERIE S, BIDAUX J E. Three-dimensional printing of shape memory alloys[J]. Materials Science Forum, 2007, 534/536:477-480.
[27] HEHR A, DAPINO M J. Dynamics of ultrasonic additive manufacturing[J]. Ultrasonics, 2017, 73:49-66.
[28] 刘洪涛,孙光爱,王沿东,等. 攻击诱发NiTi形状影象合金相变行为研究[J]. 物理学报, 2013,62(1):709-712. LIU H T, SUN G A, WANG Y D, et al. Shock-induced transformation behavior in NiTi shape memory alloy[J]. Acta Physica Sinica, 2013,62(1):709-712.
[29] 龙大伟. 铝青铜外貌激光熔覆层的腐化性与高温摩擦机能的研究[D]. 兰州:兰州理工大学, 2010. LONG D W. Study of corrosion and high temperature friction performance of laser cladding on aluminum bronze[D]. Lanzhou:Lanzhou University of Technology, 2010.
[30] 徐鹏. 激光熔覆Fe17Mn5Si10Cr5Ni影象合金涂层及其组织与机能研究[D]. 大连:大连海事大学, 2015. XU P. Research on microstructure and properties of Fel7Mn5Sil0Cr5Ni shape memory alloy coating fabricated by laser cladding[D]. Dalian:Dalian Maritime University, 2015.
[31] TOKER S M, GERSTEIN G, MAIER H J, et al. Effects of microstructural mechanisms on the localized oxidation behavior of NiTi shape memory alloys in simulated body fluid[J]. Journal of Materials Science, 2018, 53(2):948-958.
[32] TOKER S M, CANADINC D, MAIER H J, et al. Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys:Geometry and body location dependency[J]. Materials Science and Engineering:C, 2014, 36(1):118-129.
[33] SUN X T, KANG Z X, ZHANG X L, et al. A comparative study on the corrosion behavior of porous and dense NiTi shape memory alloys in NaCl solution[J]. Electrochimica Acta, 2011, 56(18):6389-6396.
[34] SHABALOVSKAYA S A, TIAN H, ANDEREGG J W, et al. The influence of surface oxides on the distribution and release of nickel from Nitinol wires[J]. Biomaterials, 2009, 30(4):468-477.
[35] LI H F, QIU K J, ZHOU F Y, et al. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application[J]. Scientific Reports, 2016, 6:37475.
[36] LUO P, WANG S N, ZHAO T T, et al. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy[J]. Rare Metals, 2013, 32(2):113-121.
[37] TEH Y H, FEATHERSTONE R. An architecture for fast and accurate control of shape memory alloy actuators[J]. International Journal of Robotics Research, 2008, 27(5):595-611.
[38] VELÁZQUEZ R, PISSALOUX E E. Modelling and temperature control of shape memory alloys with fast electrical heating[J]. International Journal of Mechanics & Control, 2012, 13(2):3-10.
[39] BARBARINO S, SAAVEDRA FLORES E L, AJAJ R M, et al. A review on shape memory alloys with applications to morphing aircraft[J]. Smart Materials and Structures, 2014, 23(6):063001.
[40] SONG S H, LEE J Y, RODRIGUE H, et al. 35Hz shape memory alloy actuator with bending-twisting mode[J]. Scientific Reports, 2016, 6:21118.
[41] SCIRÈ M G, DRAGONI E. Functional fatigue of shape memory wires under constant-stress and constant-strain loading conditions[J]. Procedia Engineering, 2011, 10(7):3692-3707.
[42] SCIRÈ MAMMANO G,DRAGONI E. Functional fatigue of NiTi shape memory wires for a range of end loadings and constraints[J]. Frattura ed Integrità Strutturale, 2012, 23(23):25-33.
[43] MATHEUS T C U, MENEZES W M M, RIGO O D, et al. The influence of carbon content on cyclic fatigue of NiTi SMA wires[J]. International Endodontic Journal, 2011, 44(6):567-573.
[44] TAKEDA K, MATSUI R, TOBUSHI H, et al. Enhancement of bending fatigue life in TiNi shape-memory alloy tape by nitrogen ion implantation[J]. Archives of Mechanics, 2015, 67(4):293-310.
[45] TANAKA Y, HIMURO Y, KAINUMA R, et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity[J]. Science, 2010, 327(5972):1488-1490.
[46] WEN Y H, PENG H B, RAABE D, et al. Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries[J]. Nature Communications, 2014, 5:4964.
[47] KUMBHAR S B, CHAVAN S P, GAWADE S S. Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite[J]. Mechanical Systems and Signal Processing, 2018, 100:208-223.
[48] GHAFOORI E, HOSSEINI E, LEINENBACH C, et al. Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening[J]. Materials & Design, 2017, 133:349-362.
[49] BONNOT E, ROMERO R, MAÑOSA L, et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys[J]. Physical Review Letters, 2008, 100(12):125901.
[50] SCHMIDT M, SCHVTZE A, SEELECKE S. Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes[J]. International Journal of Refrigeration, 2015, 54:88-97.
[51] CUI J, WU Y, MUEHLBAUER J, et al. Demonstration of high efficiency elastocaloric cooling with large Delta T using NiTi wires[J]. Applied Physics Letters, 2012, 101(7):0739047.
[52] MOYA X, KAR-NARAYAN S, MATHUR N D. Caloric materials near ferroic phase transitions[J]. Nature Materials, 2014, 13(5):439-450.
[53] YUAN G, BAI Y, JIA Z, et al. Enhancement of interfacial bonding strength of SMA smart composites by using mechanical indented method[J]. Composites Part B:Engineering, 2016, 106:99-106.
[54] WANG W, RODRIGUE H, AHN S H. Deployable soft composite structures[J]. Scientific Reports, 2016, 6:20869.
[55] BRAILOVSKI V, TERRIAULT P, GEORGES T, et al. SMA actuators for morphing wings[J]. Physics Procedia, 2010, 10(12):197-203.
[56] DONG Y, BOMING Z, JUN L. A changeable aerofoil actuated by shape memory alloy springs[J]. Materials Science and Engineering:A, 2008, 485(1):243-250.
[57] 孟祥龙,蔡伟. TiNi基形状影象质料及应用研究希望[J]. 中国质料希望, 2011, 30(9):13-20. MENG X L, CAI W. Development of TiNi-based shape memory materials and their applications[J]. Journal of Rare Metals Letters, 2011, 30(9):13-20.
[58] KIM Y, CHENG S S, DIAKITE M, et al. Toward the development of a flexible mesoscale MRI-compatible neurosurgical continuum robot[J]. Journal of IEEE Transactions on Robotics, 2017,33(6):1386-1397.
[59] STRAUß S, DUDZIAK S, HAGEMANN R, et al. Induction of osteogenic differentiation of adipose derived stem cells by microstructured nitinol actuator-mediated mechanical stress[J]. PLoS ONE, 2012, 7(12):e51264.
[60] JIN H, DONG E, XU M, et al. Soft and smart modular structures actuated by shape memory alloy (SMA) wires as tentacles of soft robots[J]. Smart Material Structures, 2016, 25(8):85026.
[61] SEOK S, ONAL C D, CHO K J, et al. Meshworm:a peristaltic soft robot with antagonistic nickel titanium coil actuators[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(5):1485-1497.
[62] BARTLETT M D, KAZEM N, POWELL-PALM M J, et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9):2143-2148.
[63] LOH C S, YUKOI H, ARAI T. New shape memory alloy actor:design and application in the prosthetic hand[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology.Japan:University of Tokyo,2005.
[64] GAISSERT N, MUGRAUER R, MUGRAUER G, et al. Inventing a micro aerial vehicle inspired by the mechanics of dragonfly flight:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[C]//14th Annual Conference on Towards Autonomous Robotic Systems(TAROS).Berlin:Springer-Verlag,2014.
[65] KIM H, SONG S, AHN S. A turtle-like swimming robot using a smart soft composite (SSC) structure[J]. Smart Materials Structures, 2013, 22(1):014007.
[66] LI Y, RIOS O, KEUM J K, et al. Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds[J]. ACS Applied Materials and Interfaces, 2016, 8(24):15750-15757.
[67] EBARA M. Shape-memory surfaces for cell mechanobiology[J]. Science and Technology of Advanced Materials. 2015, 16(1):14804.
[68] 查理斯贝. 原子辐射与聚合物[M]. 上海:上海科学技能出书社, 1963. Charlesby. Atomic radiation and polymer[M]. Shanghai:Shanghai Science and Technology Press, 1963.
[69] OTA S. Current status of irradiated heat-shrinkable tubing in Japan[J]. Radiation Physics and Chemistry, 1981, 18(1):81-87.
[70] 于明昕,周啸. 溶液法合成聚氨酯的形状影象质料及其机能[J]. 清华大学学报(自然科学版), 2002,42(5):607-610. YU M X, ZHOU X. Performance of shape memory materials made of solution polymerized polyurethane[J]. Journal of Tsinghua University(Science and Technology), 2002,42(5):607-610.
[71] CHOI J, KWON O C, JO W, et al. 4D printing technology:a review[J]. 3D Printing and Additive Manufacturing, 2015, 2(4):159-167.
[72] DING Z, YUAN C, PENG X, et al. Direct 4D printing via active composite materials[J]. Science Advances, 2017, 3(4):e1602890.
[73] HUANG L, JIANG R, WU J, et al. Ultrafast digital printing toward 4D shape changing materials[J]. Advanced Materials, 2017, 29(7):e1605390.
[74] GE Q, QI H J, DUNN M L. Active materials by four-dimension printing[J]. Applied Physics Letters, 2013, 103(13):e131901.
[75] FELTON S M, TOLLEY M T, SHIN B, et al. Self-folding with shape memory composites[J]. Soft Matter, 2013, 9(32):7688-7694.
[76] SHAFFER S, YANG K, VARGAS J, et al. On reducing anisotropy in 3D printed polymers via ionizing radiation[J]. Polymer (United Kingdom), 2014, 55(23):5969-5979.
[77] WANG J, SUN L, ZOU M, et al. Bioinspired shape-memory graphene film with tunable wettability[J]. Science Advances, 2017, 3(6):e1700004.
[78] CHEN H, LI Y, LIU Y, et al. Highly pH-sensitive polyurethane exhibiting shape memory and drug release[J]. Polymer Chemistry, 2014, 5(17):5168-5174.
[79] SHEN Q, TRABIA S, STALBAUM T, et al. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation[J]. Scientific Reports, 2016, 6:e24462.
[80] LI P, HAN Y, WANG W, et al. Novel programmable shape memory polystyrene film:a thermally induced beam-power splitter[J]. Scientific Reports, 2017, 7:e44333.
[81] XU H, YU C, WANG S, et al. Deformable, programmable, and shape-memorizing micro-optics[J]. Advanced Functional Materials, 2013, 23(26):3299-3306.
[82] LU H, LIU Y, GOU J, et al. Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite[J]. Applied Physics Letters, 2010, 96(8):e084102.
[83] RODRIGUEZ E D, LUO X, MATHER P T. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH)[J]. ACS Applied Materials & Interfaces, 2011, 3(2):152-161.
[84] WEI H, YAO Y, LIU Y, et al. A dual-functional polymeric system combining shape memory with self-healing properties[J]. Composites Part B:Engineering, 2015, 83:7-13.
[85] LU H, YU K, SUN S, et al. Mechanical and shape-memory behavior of shape-memory polymer composites with hybrid fillers[J]. Polymer International, 2010, 59(6):766-771.
[86] RODRIGUEZ J N, ZHU C, DUOSS E B, et al. Shape-morphing composites with designed micro-architectures[J]. Scientific Reports, 2016, 6:27933.
[87] MOHR R, KRATZ K, WEIGEL T, et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(10):3540-3545.
[88] LIN L, ZHANG L, GUO Y. Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA[J]. Materials Research Express, 2018, 5(1):015702.
[89] FAN J, LI G. High enthalpy storage thermoset network with giant stress and energy output in rubbery state[J]. Nature Communications, 2018, 9(1):642.
[90] 刘立武,赵伟,兰鑫,等. 智能软聚合物及其航空航天规模应用[J]. 哈尔滨家产大学学报, 2016(5):1-17. LIU L W, ZHAO W, LAN X, et al. Soft intelligent material and its applications in aerospace[J]. Journal of Harbin Institute of Technology, 2016(5):1-17.
[91] 孙健. 基于SMPC蒙皮和主动蜂窝布局的可变形机翼布局研究[D]. 哈尔滨:哈尔滨家产大学, 2015. SUN J. Investigation on morphing wing structures based on shape memory polymer composite (SMPC) skins and active honeycomb structures[D]. Harbin:Harbin Institute of Technology, 2015.
[92] 陈钱,白鹏,尹维龙,等. 飞机外翼段大标准剪切式变后掠设计与阐明[J]. 氛围动力学学报, 2013(1):40-46. CHEN Q, BAI P, YIN W L,et al. Design and analysis of a variable-sweep morphing aircraft with outboard wing section large-scale shearing[J].Journal of Acta Aerodynamica Sinica, 2013(1):40-46.
[93] LIN J, KNOLL C, WILLEY C. Shape memory rigidizable inflatable (RI) structures for large space systems applications[M]. Newport:American Institute of Aeronautics and Astronautics, 2006.
[94] CADOGAN D, SCHEIR C. Expandable habitat technology demonstration for lunar and antarctic applications[J]. SAE Technical Papers, 2008.
[95] RODRIGUEZ J N, CLUBB F J, WILSON T S, et al. In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model[J]. Journal of Biomedical Materials Research-Part A, 2014, 102(5):1231-1242.
[96] ZHAO W, LIU L, LAN X, et al. Adaptive repair device concept with shape memory polymer[J]. Smart Materials and Structures, 2017, 26(2):025027.
[97] SMALL W, WILSON T, BENETT W, et al. Laser-activated shape memory polymer intravascular thrombectomy device[J]. Optics Express, 2005, 13(20):8204-8213.
[98] XU H, YU C, WANG S, et al. Deformable, programmable, and shape-memorizing micro-optics[J]. Advanced Functional Materials, 2013, 23(26):3299-3306.
[99] JUNG Y C, CHO J W. Application of shape memory polyurethane in orthodontic[J]. Journal of Materials Science:Materials in Medicine, 2010, 21(10):2881-2886.
[100] LENDLEIN A, LANGER R. BIODEGRADABLE, elastic shape-memory polymers for potential biomedical applications[J]. Science, 2002, 296(5573):1673-1676.
[101] SZEWCZYK J, MARCHANDISE E, FLAUD P, et al. Active catheters for neuroradiology[J]. Journal of Robotics and Mechatronics, 2011, 23(1):105-115.
[102] ABADIE J, CHAILLET N, LEXCELLENT C. Modeling of a new SMA micro-actuator for active endoscopy applications[J]. Mechatronics, 2009, 19(4):437-442.
[103] ZHANG J, YIN Y. SMA-based bionic integration design of self-sensor-actuator-structure for artificial skeletal muscle[J]. Sensors and Actuators A:Physical, 2012, 181:94-102.
[104] MU J, HOU C, WANG H, et al. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices.[J]. Science Advances, 2015, 1(10):e1500533.
[105] FELTON S, TOLLEY M, DEMAINE E, et al. A method for building self-folding machines[J]. Science, 2014, 345(6197):644-646.
[106] WESTON-DAWKES W P, ONG A C, MAJIT M R A, et al. Towards rapid mechanical customization of cm-scale self-folding agents[C]//IEEE International Conference on Intelligent Robots and Systems.Vancouver:JEEE,2017:4312-4318.
[107] 何先成,高军鹏,安学锋,等. 环氧树脂基形状影象复合质料的制备与机能[J]. 航空质料学报, 2014,34(6):62-66. HE X C, GAO J P, AN X F, et al. Fabrication and performance of shape memory epoxy resin composite[J]. Journal of Aeronautical Materials, 2014,34(6):62-66.
 

优优彩票APP 贵州快3 河北11选5走势图 北京两步彩 极速3分彩 贵州快3 广发彩票 澳洲幸运5登陆 幸运飞艇机器人 快三娱乐平台